Synthesis and Reactivity of 6-Carbamoyl-5-phenyl-2,3,5,6-tetrahydro-1H-1,4ethanobenzo[f]quinoline. X-Ray Molecular Structure of ($4 \mathrm{a} R^{*}, 5 S^{*}, 6 R^{*}, 10 \mathrm{~b} R^{*}$)-5-Phenyl-2,3,4a,5,6,10b-hexahydro-1H-1,4-ethanobenzo[f]quinolin-6-yl Acetate

Yevgeny Besidsky, ${ }^{2}$ Kristina Luthman, ${ }^{*, a}$ Alf Claesson, ${ }^{b}$ Ingeborg Csöregh ${ }^{c}$ and Uli Hacksell ${ }^{a}$
${ }^{a}$ Department of Organic Pharmaceutical Chemistry, Uppsala Biomedical Centre, Uppsala University, Box 574, S-751 23 Uppsala, Sweden
${ }^{6}$ Astra Pain Control AB, S-151 85 Södertälie, Sweden
${ }^{c}$ Department of Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm. Sweden

Cyclocondensation of 2-(2-cyano-1,2-diphenylethyl)quinuclidin-3-one 1 in the presence of sulfuric acid gave an intramolecular phenylation instead of lactam formation. The cyclic product was hydrogenated to give 6-carbamoyl-5-phenyl-2,3,4a,5,6,10b-hexahydro-1H-1,4-ethanobenzo[f]quinoline. On treatment with LiAlH_{4} the carbamoyl group was stereospecifically replaced by a hydroxy group. The alcohol was acetylated and the structure was confirmed by X-ray crystallography. The hydroxylation reaction is believed to proceed via a carbonitrile intermediate. In the presence of air the nitrile can be converted to a ketone which is then reduced to the alcohol with an overall retention of configuration.

We are currently synthesizing derivatives of perhydronaphthyridine as potential NK_{1}-receptor antagonists. ${ }^{1}$ In this report we describe studies on the cyclization of 2-(2-cyano-1,2-diphenylethyl)quinuclidin-3-one ${ }^{\dagger} 1,{ }^{1}$ which was synthesized by addition of the lithium salt of phenylacetonitrile to 2 -benzylidenequinuclidin-3-one (Scheme 1).

γ-Cyano ketones, which are structural analogues of compound 1 , form dihydropyridines in $\mathrm{HCl} / \mathrm{HOAc}$ or in conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. This reaction is believed to proceed via the corresponding amido ketones which result from a partial hydrolysis of the γ-cyano ketones (Scheme 2). ${ }^{2-4}$ When similar conditions were applied to compound 1 (conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ for several hours at room temperature) the unexpected product 4 a was formed in $65-80 \%$ yield (Scheme 1). The structure of product 4a was identified as follows: The GLC-MS spectrum of compound 4a gave peaks at $m / z 330\left(14 \%, \mathrm{M}^{+}\right)$and $286(100$,

[^0]

Scheme 2 Reagent: i, H^{+}
$\mathrm{M}^{+}-\mathrm{CONH}_{2}$) and the ${ }^{1} \mathrm{H}$ NMR spectral properties were characteristic for a 'quinuclidin-2-ene' derivative. The two protons in the primary amido group appeared as two broad singlets at $\delta 5.26$ and 6.18 which disappeared after addition of $\mathrm{CD}_{3} \mathrm{OD}$. The GLC-IR spectrum showed two $\mathrm{N}-\mathrm{H}$ bands at 3530 and $3422 \mathrm{~cm}^{-1}$, respectively, and a carbonyl band at 1718 cm^{-1}. The presence of a primary amido function in compound 4a was also indicated by its conversion into the corresponding methyl ester by using methanolic HCl .

When compound 1 was treated with $\mathrm{H}_{2} \mathrm{SO}_{4}$ for longer periods of time and at elevated temperature, the epimer $\mathbf{4 b}$ was produced. Compound $\mathbf{4 b}$ was completely converted into epimer $4 a$ under alkaline conditions. ${ }^{1} \mathrm{H}$ NMR spectra of the hydrochlorides of $\mathbf{4 a}$ and $\mathbf{4 b}$ in $\mathrm{D}_{2} \mathrm{O}$ exhibited an ABCD coupling pattern (two broad doublets and two broad triplets with coupling constants of $\sim 7.5 \mathrm{~Hz}$) of four aromatic protons which indicated that one of the phenyl moieties was ortho disubstituted (the other aromatic hydrogens appeared in two narrow multiplets corresponding to 2 and 3 protons, respectively). One of the aromatic doublets $(10-\mathrm{H})$ exhibited strong NOE enhancement on irradiation of the bridgehead $1-\mathrm{H}$. The stereochemistries of the epimers were determined by a comparison of the coupling constants for $J_{\mathrm{H} 5-\mathrm{H} 6}(1.3 \mathrm{~Hz}$ for $4 \mathbf{a}$, 7.6 Hz for $\mathbf{4 b}$) with the expected dihedral angles derived from semiempirical (AM1) calculations (-86° and $+44^{\circ}$, respectively). The coupling constant in compound $\mathbf{4 a}(1.3 \mathrm{~Hz})$ implies that the substituents adopt dipseudoaxial positions. This result was corroborated by the AMI calculations which showed that the dipseudoaxially substituted conformer is more stable than the dipseudoequatorially substituted (ΔH_{f} $9.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$).

Only a few examples have been reported of an acid-catalysed cyclocondensation involving a keto group and a non-activated benzene nucleus under mild conditions. ${ }^{5}$ In fact, such reactions
usually require prolonged reaction times at elevated temperatures. ${ }^{6-10}$ When compound $\mathbf{1}$ was submitted to fairly mild reaction conditions (1 h in $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0^{\circ} \mathrm{C}$) compound 4 a was still a major product. However, the reaction mixture was complex and also contained unchanged substrate 1 , the corresponding amide 3 , and lactam 2 (Scheme 1); chromatography of the mixture on silica yielded an equimolar mixture of compounds 2 and 4a, which was not separated as the compounds eluted together. The presence of lactam 2 was deduced from spectral data [GLC-MS $m / z 330\left(90 \%, \mathbf{M ~}^{+}\right)$and GLC-(FT)IR: $3431(\mathrm{~N}-\mathrm{H})$ and $1712 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$] and from the following chemical correlations: reduction of the mixture of compounds 2 and $\mathbf{4 a}$ with diborane in tetrahydrofuran (THF) provided an equimolar mixture of compounds 5^{1} and 6 (Scheme 3). These products were separated and fully characterized. Reduction of pure amide $4 \mathfrak{a}$ using the same conditions provided only amine 6 with no trace of the naphthyridine 5 (Scheme 3). Thus, the perhydronaphthyridine 5, the structure of which was previously determined by X-ray analysis, ${ }^{1}$ could originate only from lactam 2.

Reagents: $\mathrm{B}_{2} \mathrm{H}_{6}$, THF

Scheme 3 Reagents: i, $\mathrm{B}_{2} \mathrm{H}_{6}$, THF; ii, LiAlH_{4}, THF; iii, $\mathrm{H}_{2} / \mathrm{Pt}$

Compound 2 was gradually converted into compound $\mathbf{4 a}$ when treated with sulfuric acid, either diluted or concentrated. Most likely, this conversion occurs via a ring opening, leading to the amide 3 (Scheme 1). The $\mathrm{N}^{1}-\mathrm{C}^{8 a}-\mathrm{C}^{4 a}$ fragment in lactam 2 does not have a nucleophilic β-carbon. ${ }^{11,12}$ Instead, $C-4 a$ is strongly electron-deficient as a result of the inductive effect from the protonated nitrogen. This facilitates hydrolytic cleavage of the $\mathrm{C}^{4 \mathrm{a}}-\mathrm{N}^{5}$ bond.

Intramolecular Friedel-Crafts acylation of the phenyl group in compound 3 seems to proceed irreversibly, resulting in a high yielding transformation into epimers $\mathbf{4 a}$ and $\mathbf{4 b}$. Phenylation of C-3 in quinuclidin-3-one is also favoured intermolecularly since quinuclidin-3-one yields 3,3-diphenylquinuclidine 11 on treatment with AlCl_{3} in benzene (Scheme 4).

Hydrogenation of amide $\mathbf{4 a}$ with Adams catalyst led to the same difficulties as previously reported for the hydrogenation of 1,4 -ethanonaphthyridones; ${ }^{1}$ we observed an incomplete

Scheme 4 Reagents: AlCl_{3}, benzene
conversion and a competitive reduction of the C-5 phenyl group to a cyclohexyl group, and three products $(\mathbf{8}, 9$ and 10$)$ were observed and characterized (Scheme 3). Relative stereochemistries of compounds 8 and 9 were assigned on the basis of NOE experiments which revealed a spatial proximity of $4 \mathrm{a}-\mathrm{H}, 6-\mathrm{H}$, and $10 \mathrm{~b}-\mathrm{H}$, whereas irradiation of $5-\mathrm{H}$ caused no NOEenhancement of these signals. The large values of $J_{\mathrm{H} 10 \mathrm{~b}-\mathrm{H} 4 \mathrm{a}}$, $J_{\mathrm{H} 4 \mathrm{a}-\mathrm{H} 5}$ and $J_{\mathrm{H} 5-\mathrm{H} 6}(\sim 11.2-11.5 \mathrm{~Hz})$ are compatible only with the assigned structures of compounds 8 and 9 , since these dihedral angles are close to either 0° or 180° according to MM2calculations.

Reduction of the carbamoyl functionality in compounds $\mathbf{4 a}$ and 8 to the corresponding methylamino group by using borane proceeded smoothly to yield compounds 6 (Scheme 3) and 12,

12
respectively. However, reduction of amide $\mathbf{4 a}$ with lithium aluminium hydride in THF resulted in a decarbamoylation to give compound 7 in 14% yield.
On treatment with LiAlH_{4} at room temperature, compound 8 remained unchanged for several hours, but heating of the mixture to reflux in the presence of air afforded a new product 13 in $\sim 50-65 \%$ yield (Scheme 5). The assigned structure of product

Scheme 5 Reagents and conditions: i, LiAlH_{4}, THF $\left(\mathrm{O}_{2}\right)$; ii, $\mathrm{Ac}_{2} \mathrm{O}$; iii, acetone, $40-50^{\circ} \mathrm{C}$

13 is supported by spectral and analytical data. The system of five coupled methine protons $1-\mathrm{H}, 10 \mathrm{~b}-\mathrm{H}, 4 \mathrm{a}-\mathrm{H}, 5-\mathrm{H}$, and $6-\mathrm{H}$ in the ${ }^{1} \mathrm{H}$ NMR spectrum of the alcohol 13 exhibited a coupling pattern similar to that in the precursor 8 but the $6-\mathrm{H}$ signal was shifted downfield by 1.1 ppm . NOE experiments showed that the relative stereochemistry was retained. The molecular ion was observed at $m / z 305$ in the GLC-MS spectrum, and a hydroxy group was identified in the GLC-(FT)IR spectrum of compound 13 ($3620 \mathrm{~cm}^{-1}$). In addition, compound 13 was acetylated to give

Fig. 1 Perspective views of acetate 14 as two crystallographically independent molecules (a) unprimed and (b) primed with crystallographic labelling of the atoms
ester 14, in which the doublet due to $6-\mathrm{H}$ was deshielded by $1.4 \mathrm{ppm}(\delta 6.12)$. The X-ray analysis of acetate 14 (Fig. 1) verifies the assignment of the structure of this compound, and also, indirectly, that of the precursors $4 \mathrm{a}, 8$ and 13 .

Compound 14 crystallizes as two crystallographically independent molecules. The conformation of the fused ring system of compound $\mathbf{1 4}$ can be described by means of the ringpuckering parameters, based on the deviation of the ring atoms from a main ring plane. ${ }^{13}$ As seen in Fig. $1 a$ and $1 b$ the two molecules are geometrically similar. Ring $\mathrm{B}[\mathrm{C}(4 \mathrm{a})-\mathrm{C}(5)-\mathrm{C}(6)-$ $\mathrm{C}(6 \mathrm{a})-\mathrm{C}(10 \mathrm{a})-\mathrm{C}(10 \mathrm{~b})]^{*}$ adopts a strongly distorted half-chair

[^1]conformation with an approximate two-fold axis through the C-5-C-6 bond, and with the two substituents pseudoequatorially oriented in both molecules. The corresponding bond distances and bond angles in the two molecules of compound 14 agree with each other within experimental error, and no anomalous values have been observed.
The cyclohexyl analogue 9 was converted into the transalcohol 15 a in 51% yield by treatment with LiAlH_{4}. Compound 15a appeared to be relatively unstable and isomerized to its 5,6-cis-epimer 15b during recrystallization from acetone. Compound $\mathbf{1 5 b}$ exhibited a similar mass spectrum ($\mathrm{m} / \mathrm{z} 311, \mathrm{M}^{+}$) to that shown by its $\mathrm{C}-6$ epimer 15 a but the chemical shifts and, in particular, the coupling constant values in ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 5 a}$ and $\mathbf{1 5 b}$ were distinctly different. The epimerization of compound 15a to compound 15b was probably catalysed by traces of acid, as no trans-cis conversion was observed in the reduction reaction yielding compound 15a or during the work-up procedure.

In order to study further the above transformations, resulting in a replacement of the carbamoyl group with a hydroxy substituent (Scheme 5), we carried out some additional experiments; when the reaction with LiAlH_{4} was performed under nitrogen, other products were predominantly formed from intermediate amides 8 and 9 . These products exhibited M^{+}peaks of 18 mass units lower than that of the starting material ($\mathrm{m} / \mathrm{z} 314$ and 320 respectively) and an IR absorption characteristic for carbonitriles ($2230 \mathrm{~cm}^{-1}$). The transformation of sterically hindered primary amides into carbonitriles as a first step in the reduction with LiAlH_{4} (or even NaBH_{4}) has been observed previously. ${ }^{14-16}$ The carbonitriles were smoothly converted into alcohols ($\mathbf{1 3}$ and $\mathbf{1 5 a}$) with LiAlH_{4} in THF in the presence of air. This conversion may be best explained by a stepwise mechanism, in which an oxidative elimination of the cyano group in the basic reaction medium should play a key role (Scheme 6). Numerous examples in the literature of oxidative decyanations of benzylcarbonitriles by O_{2} in the presence of a base (to yield phenyl ketones via x-cyano peroxides) ${ }^{17-20}$ provide support for this assumption. Presumably, the sterically hindered environment around the amide functions of compounds 8 and 9 prevent reduction with LiAlH_{4}. Instead nitriles are formed, which can be further converted into the alcohols 13 and 15a (Schemes 5 and 6). This hypothesis is corroborated by experiments in which LiAlD_{4} was used to convert amides 8 and 9 into alcohols 13 and 15a with a deuterium atom incorporated at $\mathrm{C}-6$.

Scheme 6 Reagents: i, base; ii, O_{2}, base; iii, $\mathrm{H}^{-}\left(\mathrm{D}^{-}\right)$

Experimental

M.p.s were measured in open glass capillaries on a ThomasHoover apparatus and are uncorrected. The NMR spectra were run on a JEOL JNM-EX 270 spectrometer for solutions in CDCl_{3} and the chemical shifts were determined relative to internal tetramethylsilane. Assignments were made on the basis of ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ and ${ }^{1} \mathrm{H}^{13} \mathrm{C}$ correlation NMR experiments. J-Values are given in Hz . The IR spectra were recorded on a PerkinElmer 298 infrared spectrophotometer (KBr tablets) and on a combined Hewlett-Packard GLC (5890)-FT/IR(5965B) unit. Mass spectral data together with GLC data were obtained with a combined Hewlett-Packard GC(5890)-MS(5791) unit. The high-resolution mass spectrum was run on a Finnegan Mat 90
double-focusing instrument, equipped with an FAB saddle field gun. The reaction mixtures were monitored by TLC on aluminium sheets precoated with silica gel $60 \mathrm{~F}_{254}$ (E. Merck) in 10 or $20 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ or with alumina in 2% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The elemental analyses were performed by MikroKemi AB, Uppsala, Sweden. The syntheses of compounds $\mathbf{1}-\mathbf{3}$ and $\mathbf{5}$ are described elsewhere. ${ }^{1} \mathrm{pH}$ Values were measured with litmus paper.
(5R*,6S*)-5-Phenyl-2,3,5,6-tetrahydro-1H-1,4-ethanobenzo-[f]quinoline-6-carboxamide 4a.-3-(3-Oxoquinuclidin-2-yl)-2,3-diphenylpropanonitrile $1(2.0 \mathrm{~g}, 6.06 \mathrm{mmol})$ was added in portions to vigorously stirred, conc. sulfuric acid $\left(10 \mathrm{~cm}^{3}\right)$, with the temperature kept at $15-20^{\circ} \mathrm{C}$ with an ice-bath. The mixture was stirred at ambient temperature for $5-6 \mathrm{~h}$ while substrate 1 gradually dissolved. The mixture was diluted with water and made alkaline by slow addition of $20 \% \mathrm{NaOH}$ at $50-70^{\circ} \mathrm{C}$. After cooling to room temperature the solution was extracted with $\mathrm{CHCl}_{3}\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified on a silica gel column with $20 \% \mathrm{MeOH}$ in EtOAc as eluent to give title compound $4 \mathrm{a}(1.48 \mathrm{~g}, 74 \%)$ as a yellowish foam; $v_{\text {max }} / \mathrm{cm}^{-1} 1718(\mathrm{C}=\mathrm{O})$ and 3422 and $3530(\mathrm{NH}) ; \delta_{\mathrm{H}} 1.41-1.85(4$ $\mathrm{H}, \mathrm{m}, 2$ - and $12-\mathrm{H}_{2}$), 2.22-3.10 (4 H, m, 3- and 11- H_{2}), 3.36 (1 H , ddd, each $J 2.3,1-\mathrm{H}), 3.62(1 \mathrm{H}, \mathrm{d}, J 1.3,5-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{d}, 6-$ $\mathrm{H}), 5.26$ and $6.18\left(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.04-7.45(9 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 26.1(\mathrm{C}-1), 28.3$ and $29.6(\mathrm{C}-2$ and -12$), 45.8(\mathrm{C}-6), 48.8$ and 50.6 (C-3 and -11), 54.8 (C-5), 121.7, 126.8, 127.3, 127.5, $128.4,130.3,130.6,132.3,136.7,140.7$ and 149.9 (ArC, C-4a and -10 b) and $175.0(\mathrm{C}=\mathrm{O}) ; m / z 330\left(\mathrm{M}^{+}, 14 \%\right)$ and $286(100)$ (Found: $\mathrm{C}, 76.2 ; \mathrm{H}, 6.9 ; \mathrm{N}, 7.9 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{H}_{2} \mathrm{O}$ requires C , 75.9; H, 6.9; N, 8.0\%).

Compound $4 \mathbf{a}$ was also formed when its epimer $\mathbf{4 b}$ (see below) ($1.0 \mathrm{~g}, 3.03 \mathrm{mmol}$) was refluxed for 5 h in a solution of sodium methoxide ($0.81 \mathrm{~g}, 15 \mathrm{mmol}$) in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$. Purification as described above gave pure compound $4 \mathrm{a}(0.83 \mathrm{~g}$, 83%).
(5R*,6R*)-5-Phenyl-2,3,5,6-tetrahydro-1H-1,4-ethanobenzo-[f]quinoline-6-carboxamide 4b.-Compound $1(2.0 \mathrm{~g}, 6.06$ $\mathrm{mmol})$ was added in portions to stirred, conc. sulfuric acid $\left(10 \mathrm{~cm}^{3}\right)$ kept at $20-50^{\circ} \mathrm{C}$. The mixture was heated at $70^{\circ} \mathrm{C}$ for 1 h and was then kept for 5 days at ambient temperature. The solution was slowly poured into a cooled mixture of CHCl_{3} ($100 \mathrm{~cm}^{3}$) and 15% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(200 \mathrm{~cm}^{3}\right)$. The aqueous phase was extracted with $\mathrm{CHCl}_{3}\left(2 \times 100 \mathrm{~cm}^{3}\right)$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified on silica gel with $20 \% \mathrm{MeOH}-\mathrm{EtOAc}$ as eluent to give title compound $\mathbf{4 b}(1.64 \mathrm{~g}, 82 \%)$ as a yellowish foam, $\delta_{\mathrm{H}} 1.50-1.88\left(4 \mathrm{H}, \mathrm{m}, 2-\right.$ and $\left.12-\mathrm{H}_{2}\right), 2.02-3.15(4 \mathrm{H}, \mathrm{m}, 3-$ and $\left.11-\mathrm{H}_{2}\right), 3.37(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 3.82(1 \mathrm{H}, \mathrm{d}, J 7.6,5-\mathrm{H}), 4.40$ $(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H}), 4.86$ and $5.43\left(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.02-7.44(9$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}} 26.0(\mathrm{C}-1), 28.3$ and 29.3 (C-2 and -12), 46.9 (C6), 49.6 and 50.9 (C-3 and -11), 54.7 (C-5), 121.4, 127.4, 127.5, 127.6, 128.0, 128.5, 128.7, 130.5, 132.3, 136.7, 138.1 and 149.9 (ArC, C-4a and -10b) and $173.8(\mathrm{C}=\mathrm{O}) ; m / z 330\left(\mathrm{M}^{+}, 15 \%\right)$ and 286 (100) (Found: C, 77.7; H, 6.7; N, 8.0. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5$ $\mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 77.9 ; \mathrm{H}, 6.8 ; \mathrm{N}, 8.3 \%$).

(5R *,6S*)-6-Aminomethyl-5-phenyl-2,3,5,6-tetrahydro-1H-

 1,4-ethanobenzo[f]quinoline 6.-Compound 4 a ($0.5 \mathrm{~g}, 1.52$ mmol) was added to a $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution of diborane in THF ($7.6 \mathrm{~cm}^{3} ; 7.6 \mathrm{mmol}$) and the mixture was heated in a tightly closed vessel at $70-80^{\circ} \mathrm{C}$ for 10 h . Methanol $\left(5 \mathrm{~cm}^{3}\right)$ was slowly added at $5^{\circ} \mathrm{C}$ and the volatile components were removed under reduced pressure. A solution of HCl (5% in 50% aq. ethanol; 20 cm^{3}) was added and the mixture was heated for 1.5 h at $50-$ $60^{\circ} \mathrm{C}$. The solution was concentrated under reduced pressure,1% aq. NaOH was added (to pH 9) and the mixture was extracted with $\mathrm{CHCl}_{3}\left(2 \times 30 \mathrm{~cm}^{3}\right)$. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The product was purified on alumina with a gradient of $0-2 \% \mathrm{MeOH}$ in EtOAc as eluent to afford pure title compound 6 ($0.3 \mathrm{~g}, 63 \%$); m.p. $220^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}} 1.42\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right), 1.50-1.89(4 \mathrm{H}, \mathrm{m}$, 2- and 12- H_{2}), 2.18-3.14 ($4 \mathrm{H}, \mathrm{m}, 3$ - and $11-\mathrm{H}_{2}$), $2.77(1 \mathrm{H}$, app br d, 6-H), 2.82-2.87 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), $3.29-3.34(1 \mathrm{H}, \mathrm{m}$, 1-H), $3.48(1 \mathrm{H}, \mathrm{app}$ br s, $5-\mathrm{H}$) and $7.00-7.40(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}} 25.8(\mathrm{C}-1), 28.3$ and 29.5 (C-2 and -12), 47.1 (C-6), 48.1 $\left(\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 48.8$ and $50.7(\mathrm{C}-3$ and -11$), 52.0(\mathrm{C}-5)$ and 121.2, $126.4,126.6,127.0,127.2,128.3,129.8,131.4,134.5,136.0$, 142.2 and 148.3 (ArC, C-4a and -10b); $m / z 316$ ($\mathrm{M}^{+}, 14 \%$) and 286 (100) (Found: C, 79.1; H, 7.5; N, 8.2. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 79.0 ; \mathrm{H}, 7.8 ; \mathrm{N}, 8.4 \%$).

5-Phenyl-2,3-dihydro-1H-1,4-ethanobenzo[f]quinoline 7.Compound $4 \mathrm{a}(0.20 \mathrm{~g}, 0.61 \mathrm{mmol})$ was added to a suspension of $\mathrm{LiAlH}_{4}(0.07 \mathrm{~g}, 1.82 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred with full access to air for 3 days at room temperature. The reaction was quenched with ethanol $\left(3 \mathrm{~cm}^{3}\right)$ and the resulting mixture was filtered through Celite and the filtrate was concentrated under reduced pressure. The residue was partitioned between CHCl_{3} and water. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified on silica gel with 50% hexane-EtOAc as eluent to give compound 7 ($24 \mathrm{mg}, 14 \%$) as an oil; δ_{H} 1.55-1.70 and 1.92-2.08 ($4 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}$ and $12-\mathrm{H}_{2}$), 2.63-2.77 and 3.18-3.32 $(4 \mathrm{H}, \mathrm{m}, 3-$ and $\left.11-\mathrm{H}_{2}\right), 3.98-4.03(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 7.36-8.14(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.79(1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}) ; \delta_{\mathrm{C}} 26.2(\mathrm{C}-1), 28.5(\mathrm{C}-2$ and -12$), 49.7$ (C3 and -11) and $121.9,125.3,125.6,127.0,127.9,128.4,128.8$, 129.7, 131.8, 136.2, 139.1 and 140.7 (ArC and C-6) (Found: $\mathrm{M}^{+}, 285.1583 . \mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{M}, 285.1519$).

Synthesis of $\left(4 \mathrm{aR} *, 5 \mathrm{~S}^{*}, 6 \mathrm{R}^{*}, 10 \mathrm{bR} *\right)$ - 5 -Phenyl- $2,3,4 \mathrm{a}, 5,6,10 \mathrm{~b}-$ hexahydro-1 $\mathrm{H}-1,4$-ethanobenzo[f]quinoline-6-carboxamide 8, ($4 \mathrm{aR} *, 5 \mathrm{~S}^{*}, 6 \mathrm{~S}^{*}, 10 \mathrm{bS} \mathrm{S}^{*}$)-5-Cyclohexyl-2,3,4a,5,6,10b-hexahydro$1 \mathrm{H}-1,4$-ethanobenzo[f]quinoline-6-carboxamide 9, and (5R*,6R*)-5-Cyclohexyl-1,4-ethano-2,3,5,6-tetrahydro-1H-1,4ethanobenzo[f] quinoline-6-carboxamide 10 by Catalytic Hydrogenation of Compound $4 \mathbf{a}$.-A mixture of compound $4 \mathrm{a}(1.0 \mathrm{~g}$, 3.03 mmol) and PtO_{2} hydrate ($79-84 \% \mathrm{Pt}$ content) $(100 \mathrm{mg}$) in glacial acetic acid ($50 \mathrm{~cm}^{3}$) was hydrogenated at 60 psi in a Parr apparatus for 20 h . The catalyst was filtered off, and the filtrate was concentrated under reduced pressure. The residue was treated with 10% aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to $\mathrm{pH} 9-10$ and extracted with CHCl_{3}. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified on silica gel with a gradient of $20-50 \% \mathrm{MeOH}$ in CHCl_{3} as eluent to give pure 5phenyl compound 8 ($0.37 \mathrm{~g}, 37 \%$), 5-cyclohexyl compound 9 $(0.18 \mathrm{~g}, 18 \%)$ and enamine $10(0.09 \mathrm{~g}, 9 \%)$.

Compound 8: m.p. $270^{\circ} \mathrm{C}$ (decomp.); $v_{\text {max }} / \mathrm{cm}^{-1} 1490$ and $1610(\mathrm{Ph}), 1665(\mathrm{C}=\mathrm{O})$ and 3180 and $3300(\mathrm{~N}-\mathrm{H}) ; \delta_{\mathrm{H}} 1.36-1.82$ $\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 12-\mathrm{H}_{2}\right), 2.47-2.52(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.52-3.06(4 \mathrm{H}$, $\left.\mathrm{m}, 3-\mathrm{and} 11-\mathrm{H}_{2}\right), 3.02(1 \mathrm{H}$, app br d, $10 \mathrm{~b}-\mathrm{H}), 3.17(1 \mathrm{H}$, dd, $\left.J_{1}=J_{2}=11.5,5-\mathrm{H}\right), 3.60\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=J_{2}=11.5,4 \mathrm{a}-\mathrm{H}\right)$, $3.64(1 \mathrm{H}, \mathrm{d}, J 11.5,6-\mathrm{H}), 5.37$ and $5.43\left(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and 7.12-7.40 ($9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}} 21.0,25.7$ and $27.7(\mathrm{C}-1,-2$ and $-12), 39.1,40.9,45.9,49.9,53.7$ and 62.8 (C-3, -4a, $-5,-6,-10 \mathrm{~b}$ and -11), 126.0, 126.5, 126.9, 127.1, 127.3, 127.9, 128.6, 137.5 and $142.7(\mathrm{ArC})$ and $174.6(\mathrm{C}=\mathrm{O}) ; m / z 332\left(\mathrm{M}^{+}, 6 \%\right)$ and 205 (100) (Found: C, 77.2; H, 7.4; N, 7.8. $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 77.4 ; \mathrm{H}, 7.3 ; \mathrm{N}, 8.2 \%$).

Compound 9: m.p. $132-134^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1655(\mathrm{C}=\mathrm{O})$ and $3400-3150(\mathrm{NH}) ; \delta_{\mathrm{H}}$ 1.15-1.90 $\left(15 \mathrm{H}, \mathrm{m}, 2-\right.$ and $11-\mathrm{H}_{2}$, cyclohexyl), $1.98(1 \mathrm{H}$, app br t, $5-\mathrm{H}), 2.38-2.45(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $2.48-2.70$ and $2.92-3.05\left(4 \mathrm{H}, \mathrm{m}, 3-\right.$ and $\left.12-\mathrm{H}_{2}\right), 2.74(1 \mathrm{H}$, app br d, $10 \mathrm{~b}-\mathrm{H}), 3.17(1 \mathrm{H}$, app t, $4 \mathrm{a}-\mathrm{H}), 3.33(1 \mathrm{H}, \mathrm{d}, J 11.2,6-\mathrm{H})$,
$5.72\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right)$ and $7.20-7.35(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 19.2,20.5$, $23.6,23.8,25.4,25.9,26.0,26.3$ and $27.1(\mathrm{C}-1,-2,-5,-12$, and cyclohexyl), $38.2,44.1,47.2,52.1$ and 59.7 (C-3, $-4 \mathrm{a},-6,-10 \mathrm{~b}$ and -11) $126.1,127.9,129.2,130.4,135.9$ and 139.2 (ArC) and $172.8(\mathrm{C}=\mathrm{O}) ; m / z 338\left(\mathrm{M}^{+}, 43 \%\right)$ and 205 (100). An analytical sample was obtained by conversion of the base into the hydrochloride salt by using ethereal HCl (Found: C, 68.9; H , $8.0 ; \mathrm{N}, 6.9 . \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 68.8 ; \mathrm{H}, 8.3$; $\mathrm{N}, 7.3 \%$).

Compound 10: m.p. $122-124^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 0.80-1.90(15 \mathrm{H}, \mathrm{m}, 2-$ and $12-\mathrm{H}_{2}$ and cyclohexyl), 2.58-2.78 and $3.07-3.20(4 \mathrm{H}, \mathrm{m}, 3-$ and $\left.11-\mathrm{H}_{2}\right), 2.92(1 \mathrm{H}$, app br d, $5-\mathrm{H}), 3.23-3.28(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $3.63\left(1 \mathrm{H}\right.$, app br s, 6-H), 5.24 and $5.62\left(2 \mathrm{H}, 2 \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.20-7.35$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{C}} 25.8,26.3,26.4,26.7,27.7,28.4$, $29.1,30.9$ and 40.8 (C-1, -2, -12, and cyclohexyl), 46.1, 48.2, 48.8 and $50.1(\mathrm{C}-3,-5,-6$ and -11$), 121.7,127.3,128.0,129.3,131.8$, $132.5,136.2$ and 147.9 ($\mathrm{ArC}, \mathrm{C}-4 \mathrm{a}$ and -10 b) and $172.3(\mathrm{C}=\mathrm{O})$; $m / z 336\left(\mathrm{M}^{+}, 6 \%\right)$ and $210(100)$. An analytical sample was obtained by conversion of the base into the hydrochloride salt by using ethereal HCl ; m.p. $186-187^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.3 ; \mathrm{H}, 7.7$; $\mathrm{N}, 6.9 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 67.6 ; \mathrm{H}, 7.9 ; \mathrm{N}$, 7.2%).

3,3-Diphenylquinuclidine 11.-Quinuclidin-3-one hydrochloride $(0.30 \mathrm{~g}, 1.86 \mathrm{mmol})$ was heated to reflux in benzene $\left(3 \mathrm{~cm}^{3}\right)$ in the presence of anhydrous $\mathrm{AlCl}_{3}(0.37 \mathrm{~g}, 2.8 \mathrm{mmol})$ for $3-5 \mathrm{~h}$. The mixture was diluted with $\mathrm{CHCl}_{3}\left(20 \mathrm{~cm}^{3}\right)$, quenched with water ($3 \mathrm{~cm}^{3}$), and $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$ was added (to $\mathrm{pH} 9-10$). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was purified by chromatography on alumina with CHCl_{3} as eluent to yield pure compound 11 (0.33 g, 68%); m.p. $135-136^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.50-1.76\left(4 \mathrm{H}, \mathrm{m}, 5-\right.$ and $\left.7-\mathrm{H}_{2}\right)$, $2.73-2.81\left(4 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} 8-\mathrm{H}_{2}\right), 2.82-2.88(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.84(2$ $\left.\mathrm{H}, \mathrm{s}, 2-\mathrm{H}_{2}\right)$ and $7.03-7.35(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}) ; \delta_{\mathrm{C}} 23.4(\mathrm{C}-5$ and -7$)$, 28.7 (C-4), 45.8 (C-3), 47.0 (C-6 and -8), 58.8 (C-2) and 125.2, 126.7, 128.2 and $148.6(\mathrm{Ph}) ; m / z 263\left(\mathrm{M}^{+}, 100 \%\right)$ (Found: C, 86.6; $\mathrm{H}, 8.2 ; \mathrm{N}, 5.3 . \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}$ requires $\left.\mathrm{C}, 86.7 ; \mathrm{H}, 8.0 ; \mathrm{N}, 5.3 \%\right)$.
(4aR*,5S*,6R*,10bR*)-6-Aminomethyl-5-phenyl-2,3,4a,5,6, 10b-hexahydro-1H-1,4-ethanobenzo[f]quinoline 12.-Compound $12(0.12 \mathrm{~g}, 60 \%)$ was synthesized from amide 8 $(0.20 \mathrm{~g}, 0.6 \mathrm{mmol})$ as described above for the synthesis of amine 6; m.p. $287^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}} 1.37-1.83\left(4 \mathrm{H}, \mathrm{m}, 2-\right.$ and $\left.12-\mathrm{H}_{2}\right)$, $1.51\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}_{2}\right), 2.50-2.54(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.57-3.30(8 \mathrm{H}$, $\mathrm{m}, 3-$ and $11-\mathrm{H}_{2}, 5-$ and $6-\mathrm{H}$, and $\left.\mathrm{CH}_{2} \mathrm{NH}_{2}\right), 3.10(1 \mathrm{H}$, app br d, $10 \mathrm{~b}-\mathrm{H}) .3 .74\left(1 \mathrm{H}\right.$, app br $\left.\mathrm{t}, J_{1}=J_{2}=11.0 .4 \mathrm{a}-\mathrm{H}\right)$ and $7.23-$ $7.40(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}} 20.9,25.2$ and $27.6(\mathrm{C}-1,-2$ and -12$)$, $39.0,39.1,40.8,44.0,45.1,49.8$ and $64.6(\mathrm{C}-3,-4 \mathrm{a},-5,-6,-10 \mathrm{~b}$, -11 , and $\mathrm{CH}_{2} \mathrm{NH}_{2}$), and $124.6,125.8,126.1,126.6,127.4,127.9$, 128.6, $138.2,139.8$ and $143.7(\mathrm{ArC}) ; m / z 318\left(\mathrm{M}^{+}, 19 \%\right)$ and 82 (100) (Found: C, 82.8, H, 8.0; N, 8.4. $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2}$ requires C , 83.0: H, 8.2; N, 8.8\%).
(4aR*,5S*,6R*,10bR*)-5-Phenyl-2,3,4a,5,6,10b-hexahydro$1 \mathrm{H}-1,4$-ethanobenzo[f]quinolin-6-ol 13.- $-\mathrm{LiAlH}_{4}(68 \mathrm{mg}, 1.8$ $\mathrm{mmol})$ was added to a solution of amide $8(0.20 \mathrm{~g}, 0.6 \mathrm{mmol})$ in THF ($10 \mathrm{~cm}^{3}$). The mixture was refluxed and stirred for $4-5 \mathrm{~h}$ with an access of air. Ethanol ($3 \mathrm{~cm}^{3}$) was added carefully at $0^{\circ} \mathrm{C}$ and the solution was filtered through Celite and concentrated under reduced pressure. The residue was partitioned between water and CHCl_{3}. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was chromatographed on alumina with CHCl_{3} as eluent to give pure alcohol $13\left(118 \mathrm{mg}, 64 \%\right.$); m.p. $184-185^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3620$ $(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.33-1.82\left(4 \mathrm{H}, \mathrm{m}, 2-\right.$ and $\left.12-\mathrm{H}_{2}\right), 1.84(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $2.48-2.54(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.52-3.05\left(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 11-\mathrm{H}_{2}\right.$ and $10 \mathrm{~b}-\mathrm{H}), 2.87(1 \mathrm{H}, \mathrm{dd}, J 10.9$ and $11.5,5-\mathrm{H}), 3.61(1 \mathrm{H}, \mathrm{dd}, 4 \mathrm{a}-$ $\mathrm{H}), 4.70(1 \mathrm{H}, \mathrm{d}, J 10.9,6-\mathrm{H})$ and $7.25-7.73(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}$
$21.0(\mathrm{C}-12), 25.4(\mathrm{C}-1), 27.6(\mathrm{C}-2), 38.7(\mathrm{C}-10 \mathrm{~b}), 41.0(\mathrm{C}-11)$, $49.9(\mathrm{C}-3), 51.7(\mathrm{C}-5), 61.5(\mathrm{C}-4 \mathrm{a}), 71.2(\mathrm{C}-6)$ and 123.6,125.9, $126.4,126.9,127.4,128.4,129.1,135.8,141.1$ and 141.2 (ArC); $m / z 305\left(\mathrm{M}^{+}, 55 \%\right)$ and 131 (100) (Found: C, 81.4; H, 7.7; N, 4.6. $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 81.4 ; \mathrm{H}, 7.6 ; \mathrm{N}, 4.5 \%$).
(4aR*,5S*,6R*,10bR*)-5-Phenyl-2,3,4a,5,6,10b-hexahydro$1 \mathrm{H}-1,4$-ethanobenzo[f]quinolin-6-yl Acetate 14.-Compound $13(50 \mathrm{mg}, 0.16 \mathrm{mmol})$ was treated with an excess of acetic anhydride $\left(2 \mathrm{~cm}^{3}\right)$ in pyridine $\left(2 \mathrm{~cm}^{3}\right)$ for 2 h at $20^{\circ} \mathrm{C}$. The mixture was quenched with water ($10 \mathrm{~cm}^{3}$) and concentrated under reduced pressure. The residue was partitioned between saturated aq. $\mathrm{NaHCO}_{3}(\mathrm{pH} 8-9)$ and CHCl_{3}. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to leave a residue, which was crystallized from diethyl ether-acetone ($1: 1$) to yield compound $14(44 \mathrm{mg}, 78 \%) ;$ m.p. $158-160^{\circ} \mathrm{C} ; \delta_{\mathrm{H}} 1.32-$ $1.86\left(4 \mathrm{H}, \mathrm{m}, 2-\mathrm{and} 12-\mathrm{H}_{2}\right), 1.82(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.48-2.54(1 \mathrm{H}$, $\mathrm{m}, 1-\mathrm{H}), 2.56-3.12\left(6 \mathrm{H}, \mathrm{m}, 3-\right.$ and $11-\mathrm{H}_{2}$, and $\left.5-, 10 \mathrm{~b}-\mathrm{H}\right), 3.71$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=J_{2}=11.4,4 \mathrm{a}-\mathrm{H}\right), 6.12(1 \mathrm{H}, \mathrm{d}, J 11.2,6-\mathrm{H})$ and $7.13-7.42(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 20.4(\mathrm{Me}), 21.0(\mathrm{C}-12), 25.4(\mathrm{C}-1)$, 27.6 (C-2), 38.7 (C-10b), 40.9 (C-11), 48.9 (C-3), 49.9 (C-5), 61.2 (C-4a), 73.0 (C-6), 123.0, 125.8, 126.9, 127.0, 127.3, 128.2, $128.3,136.4,138.3$ and $140.9(\mathrm{ArC})$ and $170.4(\mathrm{C}=\mathrm{O}) ; m / z 347$ $\left(\mathrm{M}^{+}, 28 \%\right)$ and 204 (100) (Found: C, $79.8 ; \mathrm{H}, 6.9 ; \mathrm{N}, 4.3$. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}$ requires $\mathrm{C}, 79.5 ; \mathrm{H}, 7.2 ; \mathrm{N}, 4.0 \%$).
(4aR*,5S*,6R*,10bR*)-5-Cyclohexyl-2,3,4a,5,6,10b-hexa-hydro-1H-1,4-ethanobenzo[f]quinolin-6-ol 15a and (4aR*,5S*, 6S*,10bR*)-5-Cyclohexyl-2,3,4a,5,6,10b-hexahydro-1H-1,4ethanobenzo[f] quinolin-6-ol 15b.-Compound 15a was synthesized from amide $9(0.10 \mathrm{~g}, 0.3 \mathrm{mmol})$ as described above for the .synthesis of alcohol 13. Purification on alumina with $2 \% \mathrm{MeOH}$ in CHCl_{3} as eluent gave title compound $\mathbf{1 5 a}(47 \mathrm{mg}, 51 \%)$; m.p. $80-85^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}} 1.20-1.82\left(16 \mathrm{H}, \mathrm{m}, 2-\right.$ and $12-\mathrm{H}_{2}, \mathrm{OH}$, and cyclohexyl), $1.41(1 \mathrm{H}$, app t, $5-\mathrm{H}), 2.33-2.38(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$, $2.42-2.61$ and $2.83-2.98\left(4 \mathrm{H}, \mathrm{m}, 3-\right.$ and $\left.11-\mathrm{H}_{2}\right), 2.66(1 \mathrm{H}$, app brd, $10 \mathrm{~b}-\mathrm{H}), 3.0\left(1 \mathrm{H}, \mathrm{dd}, J_{1}=J_{2}=11.0,4 \mathrm{a}-\mathrm{H}\right), 4.44(1 \mathrm{H}, \mathrm{dd}$, $J 8.0$ and $10.8,6-\mathrm{H})$ and $7.12-7.60(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 21.3,24.2$, $27.3,27.5,27.6,27.9,28.2$ and $33.9(\mathrm{C}-1,-2,-12$, and cyclohexyl), 37.7 and 40.8 (C-5 and -10 b), 47.9 and 49.8 (C-3 and -11), $58.3(\mathrm{C}-4 \mathrm{a}), 69.2(\mathrm{C}-6)$ and $122.8,125.7,126.1,126.3$, 126.6 and $137.0(\mathrm{ArC}) ; m / z 311\left(\mathrm{M}^{+}, 35 \%\right)$ and $228(100)$ (Found: C, 80.9; H, 9.4; N, 4.4. $\mathrm{C}_{21} \mathrm{H}_{29}$ NO requires C, $81.0 ; \mathrm{H}$, $9.4 ; \mathrm{N}, 4.5 \%$).

A sample (30 mg) was heated in acetone at $40-50^{\circ} \mathrm{C}$ for $5-10$ min and the precipitated crystals were filtered off to give compound 15b (22 mg); m.p. $142{ }^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}} 0.95-2.21(16$ $\mathrm{H}, \mathrm{m}, 2-\mathrm{and} 12-\mathrm{H}_{2}, \mathrm{OH}$, and cyclohexyl), 2.54-2.62 (2 H, m, 1and $5-\mathrm{H}), 2.90-3.05,3.28-3.58$ and $4.33-4.48(5 \mathrm{H}, \mathrm{m}, 3-\mathrm{and}$ $11-\mathrm{H}_{2}$, and $\left.4 \mathrm{a}-\mathrm{H}\right), 3.72(1 \mathrm{H}$, app brd, $10 \mathrm{~b}-\mathrm{H}), 4.78(1 \mathrm{H}, \mathrm{d}, J$ $1.8,6-\mathrm{H})$ and $7.16-7.50(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 18.7,24.1,25.8,26.2$, $26.3,27.9,30.2$ and 31.1 (C-1, $-2,-12$, cyclohexyl), 37.3 and 42.9 (C-5 and -10b), 47.4 and 50.0 (C-3 and -11), 60.8 (C-4a), 67.2 (C-6) and $127.2,127.4,128.3,130.2,133.8$ and $136.9(\mathrm{ArC}) ; ~ m / z$ $311\left(\mathrm{M}^{+}, 17 \%\right)$ and 82 (100) (Found: C, 80.4; H, 9.3; N, 4.4\%).
X-Ray Analysis.-Crystals of compound $14\left(\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{2}\right.$, $M_{w} 347.456$) were grown from a diethyl ether-acetone ($1: 1$) solution. The diffraction data were collected on an STOE/AED2 diffractometer with graphite-monochromized Mo-K α radiation ($\lambda 0.71069 \AA, \theta_{\max } 45^{\circ}$) at room temperature. The intensities of 4920 reflections were measured and corrected for background, Lorentz and polarization effects. The selected single crystal, approximately $0.42 \times 0.38 \times 0.40 \mathrm{~mm}$, showed triclinic ($P \bar{I}$) symmetry, with unit-cell dimensions $a=9.790(2)$, $b=11.006(3), c=19.030(4) \AA, \alpha=80.26(1), \beta=81.87(1)$, $\gamma=68.62(1)^{\circ}$ and $V_{c}=1874.7(7) \AA^{3}$. In the least-squares refinement of the cell parameters the 20 -values of 48 reflections
with $16<2 \theta<22^{\circ}$ were used. The unit cell contains two crystallographically independent molecules $\left[Z=4, D_{c}=\right.$ $1.2310(5) \mathrm{g} \mathrm{cm}^{-3}, F(000)=744$ and $\left.\mu=0.726 \mathrm{~cm}^{-1}\right]$.
Structure analysis and refinement. The preliminary structure model was derived by application of direct methods (SHELXS) ${ }^{21}$ and refined by full-matrix least-squares methods based on $|F|$ (SHELX). ${ }^{22}$ The hydrogen atoms were assumed to be in idealized positions with $\mathrm{C}-\mathrm{H} 1.00 \AA$, which were recalculated after each refinement cycle using geometric evidence. The methyl groups were treated as rigid. The non-hydrogen-atom positions were refined together with their anisotropic displacement parameters, and four collective isotropic vibrational parameters (one for the methyl- and one for the other H -atoms in each molecule) were refined for the hydrogens. Accordingly, refinement of 479 variables against 2831 reflections with $I>3 \sigma(I)$ converged to $R \quad[=$ $\left.\Sigma|\Delta F| / \Sigma\left|F_{0}\right|\right]=0.037$ and $\left.w R \quad\left[=\Sigma w|\Delta F|^{2} / \Sigma w\left|F_{0}\right|^{2}\right)^{1 / 2}\right]=$ 0.049 . Refinement of the final model using all the 4288 unique, non-zero reflections yielded a $w R_{\text {tol }}$-value of 0.053 . The weights of the structure factors were assumed ${ }^{22}$ as $w=\left[\sigma^{2}(F)+\right.$ $\left.0.00065 F^{2}\right]^{-1}$.

Supplementary data. Lists of the refined fractional atomic coordinates and of bond distances and angles involving nonhydrogen atoms have been deposited as supplementary data at the Cambridge Crystallographic Data Centre (see Instructions for Authors, J. Chem. Soc., Perkin Trans. I, Issue 1). Lists of the anisotropic displacement parameters of the non-hydrogen atoms and the observed and calculated structure factors are available directly from the authors (I. C.).

References

1 Y. Besidsky, K. Luthman, A. Claesson, C. J. Fowler, I. Csöregh and U. Hacksell, preceding paper.

2 E. P. Kohler and C. F. H. Allen, J. Am. Chem. Soc., 1924, 46, 1522
3 C. F. H. Allen, J. Am. Chem. Soc., 1925, 47, 1733
4 C. F. H. Allen, J. Am. Chem. Soc., 1927, 49, 1112.
5 E. Gudriniece, G. Vanags and K. Ziemelis, Latv. PSR Zinat. Akad Vestis, Kim. Ser., 1963, 71 (Chem. Abstr., 1963, 59, 12717).
6 A. J. Birch and H. Smith, J. Chem. Soc., 1951, 1882.
7 K. G. Rutherford and M. S. Newman, J. Am. Chem. Soc., 1957, 79 213.

8 K. B. Moser and C. K. Bradsher, J. Am. Chem. Soc., 1959, 81, 2547
9 R. A. Barnes and R. Miller, J. Am. Chem. Soc., 1960, 82, 4960.
10 Y. G. Gololobov and I. V. Chernoglazova, Izv. Akad. Nauk SSSR, Ser. Khim., 1990, 2671 (Chem. Abstr., 1991, 114, 121678h).
1 M. D. Mashkovsky and L. N. Yakhontov, Prog. Drug Res., 1969 13, 293.
12 C. A. Grob, A. Kaiser and E. Renk, Helv. Chim. Acta, 1957, 40 2170.

13 D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354.
14 M. S. Newman and T. Fukunaga, J. Am. Chem. Soc., 1960, 82, 693.
15 L. G. Humber and M. A. Davis, Can. J. Chem., 1966, 44, 2113
16 S. E. Ellzey, C. H. Mack and W. J. Connick, J. Org. Chem., 1967, 32. 846.

17 S. J. Selikson and D. S. Watt, J. Org. Chem., 1975, 40, 267.
18 S. S. Kulp and M. J. McGee, J. Org. Chem., 1983, 48, 4097
19 K. A. Parker and J. Kallmerten, J. Org. Chem., 1980, 45, 2614.
20 D. S. Watt, J. Am. Chem. Soc., 1976, 98, 271.
21 G. M. Sheldrick, Acta Crystallogr., Sect. A, 1990, 46, 467.
22 G. M. Sheldrick, SHELX 400 ATOM VERSION, updated by D. Rabinovich and K. Reich, Department of Structural Chemistry Weizmann Institute of Science, Rehovot, Israel; and subsequently modified by G. Sheldrick, University of Göttingen, Germany, 1979

Acknowledgements

Financial support was obtained from the Swedish National Board for Industrial and Technical Development (NUTEK), Swedish Natural Science Research Council (NFR), and Astra Pain Control AB.

Paper 4/05092D
Received 19th August 1994
Accepted 13th October 1994

[^0]: + Systematic name: 3-(3-oxoquinuclidin-2-yl)-2,3-diphenylpropanonitrile.

[^1]: * Crystallographic numbering scheme.

